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Abstract—The increasing integration of distributed energy
resources (DERs) into smart grids has enhanced energy manage-
ment in power systems. However, this development also makes
DERs more vulnerable to cyberthreats through various technical
and human vulnerabilities (e.g., the 2015 Ukraine power grid
cyberattack). Enhancing the DER-based smart grid’s cyber-
resiliency is becoming highly critical and attracts interest from
both industry and academia. Existing research has proposed
various security frameworks and protective measures, but they
neither focus on specific attack vectors nor can provide holistic
protection across the full scope of vulnerabilities. To address
these critical gaps in grid security, this paper proposes a novel
framework that uses blockchain technology and differential
privacy to enhance the cybersecurity of DER-based smart grids.
The framework includes a lightweight blockchain for dynamic
certificate management to enable secure and immutable com-
munication between DER components. Additionally, differential
privacy is integrated by adding calculated noise to data (i.e., ran-
dom values that are intentionally added, anonymizing sensitive
data while maintaining utility). Key metrics, such as transaction
latency, certificate issuance time, and resilience to cyberattacks,
are analyzed to evaluate the scalability and effectiveness of
the proposed solution. The experimental results demonstrate
competitive performance, with block creation times averaging
0.85 seconds and attack recovery times under 40 microseconds,
comparing favorably to traditional solutions, which typically
show latencies ranging from 2ms to 423ms for similar security
operations in SCADA and substation networks. These findings
reveal the potentials of both blockchain and differential privacy
protecting smart grid ecosystems toward security with scalability.

Index Terms—Distributed Energy Resources (DERs), smart
grids (SGs), blockchain technology, differential privacy, cyber-
resiliency, smart contracts

I. INTRODUCTION

The energy system is constantly evolving to address the
difficulties posed by the energy crisis (i.e., the over-reliance
on fossil fuels, escalating energy prices, etc.); rising power
consumption driven by increasing global population and ur-
banization; and climate change. The flexibility and efficiency
of power delivery to consumers can be increased by using digi-
tally controlled and software-driven DERs (distributed energy
resources that are small-scale energy systems located close
to where energy is consumed). Modern energy infrastructures
have been increasingly characterized by cyber-physical power
systems, where traditional electrical networks are combined
with advanced digital technologies of smart meters, phasor
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Fig. 1. Notable DER and smart grid cyberattacks timeline

measurement units, and loT-enabled devices. The vulnera-
bilities of cyber-attacks were introduced in such a way that
the threats of energy theft, false data injection (FDI), and
insider threats can leverage weaknesses in communication and
control systems to undermine operational integrity and energy
reliability [25].

The U.S. electrical grid, which has been called the largest
interconnected machine” in the world, is made up of “more
than 7,000 power plants, 55,000 substations, 160,000 miles
of high-voltage transmission lines, and millions of miles of
low-voltage distribution lines,” to put the American threat
in a broader context [23]. Recent instances of cyberattacks,
including the 2019 REvil (Ransomware Evil) ransomware at-
tack targeting energy infrastructure, the 2022 EnerCon breach
disrupting wind turbine operations, and the Volt Typhoon,
which included attacks on DERs, highlight that attackers are
often after renewable energy resources either for extortion of
ransom or to disrupt energy systems. Fig. 1 displays how
attacks have progressed from broad energy sector targeting
(Havex) to more specialized attacks on renewable energy
infrastructure (wind farms, solar installations).

This paper proposes a novel framework (see Fig. 2) that
enhances the cybersecurity of DER-based smart grids by
integrating blockchain technology and differential privacy. By
leveraging blockchain and the data anonymization capabilities
of differential privacy, the proposed solution aims to secure
data exchange, mitigate cyber threats, and ensure privacy
compliance.



II. BACKGROUND AND RELATED WORK
A. Evolution of Power Systems

A smart grid combines information technology with the
current power system network, which enables the collection
of electrical information through smart sensors and commu-
nication systems [14]. The development of the smart grid
in place of a traditional grid architecture has brought forth
numerous improvements, including preventing the duration
and frequency of blackouts, higher integration with renewable
energy and reducing energy production cost and consumption
[29]. The integration of DERs has been considered one of
the most viable solutions to confront future energy demand,
combining technologies of small power generation, from 1 kW
to 10,000 kW, located on-site at or near end-user facilities that
may also have capabilities of generation, storage, and modula-
tion of energy consumption through renewable resources like
solar panels, wind turbines, combined heat and power plants,
and energy storage systems [3].

B. Smart Grid Infrastructure Components

Advance metering infrastructure (AMI) integrates a range
of technology into smart grids in order to provide valuable
information, such as time-stamped system information, and
establish communication with consumers [17]. The infrastruc-
ture consists of Meter Data Management Systems (MDMS),
communication networks at various levels of the infrastructure
hierarchy, smart meters, and ways to incorporate the gath-
ered data into software application platforms and interfaces
[12]. Within this infrastructure framework, Remote Terminal
Units (RTUs) allow remote control for power systems, which
give historical and sequence of event (SOE) data for fault
investigations, historical trend data for networking planning,
plant parameters that can be used to initiate maintenance,
and trend data for predictive maintenance [13]. RTUs send
and receive predefined messages within a substation to and
from Supervisory Control and Data Acquisition (SCADA)
systems that enable operators to remotely monitor equipment
statuses, control circuit breakers, and gather telemetry data
[27]. These components constitute the smart grid ecosystem
and are compliant with communication networks that utilize a
suite of protocols and technologies to effect efficient, secure,
and timely data transfer [21].

C. Smart Grid Cybersecurity Challenges

The transformation of traditional power systems into smart
grids based on DERSs has created critical vulnerabilities in the
grid infrastructure [8]. The targets in advanced metering infras-
tructure networks and remote terminal units (RTUs) are sub-
jected to highly complex cyberattacks [18]. In-depth analysis
of recently identified security incidents discloses that usually
an intruder uses SCADA protocol vulnerabilities—especially
those in Modbus and DNP3—that don’t contain a built-in
authentication mechanism [19]. Additionally, the integration
of IoT devices in smart grids has exposed the Transmission
Control Protocol (TCP)/Internet Protocol (IP) stack implemen-
tation to specific vulnerabilities, especially at the transport

TABLE I
BENEFITS OF BLOCKCHAIN IMPLEMENTED INTO DER-BASED SMART
GRIDS
Reference Benefit
Andoni et al., | Decentralized trust mechanisms that eliminate
2019 [2] the need for trusted third parties
Oprea & | Immutable transaction logging that ensures se-
Andreescu, cure, transparent operations
2020 [20]
Abbas et al., Smart contracts that can automate secure inter-
2024 [1] actions between stakeholders
Yildiz Blasi et | Peer-to-peer capabilities that enable direct, se-
al., 2021 cure transactions between DER owners, aggre-
gators, and utility operators

and application layers [15]. Common attack vectors in DERs
include Denial of Service (DoS) attacks, False Data Injection
(FDI), and malware infections [16].

D. Gaps in Current Research

The current standardization challenges include scalability
gaps in IEEE 2030.5 standards for highly distributed and
resource-constrained DER environments [26] and insufficient
mechanisms in Sunspec Modbus, an open communication
standard for DERS [24]. Most DER equipment does not
have specialized cryptographic hardware and must therefore
trade off security requirements with processing limitations,
especially in real-time control applications [11]. With DER
equipment likely to operate for 25+ years, long-term security
becomes an issue, with particular concerns related to software
vulnerability and patching mechanisms [6]. Traditional secu-
rity approaches in a centralized manner rely on trusted third
parties with complex authentication mechanisms; this poten-
tially creates vulnerabilities while increasing the overhead in
operations [4].

E. Blockchain Technology in Smart Grid Security

A distributed, decentralized, and shared database or ledger
with an ongoing record of past transactions makes up the
blockchain, a type of digital data structure. Every block has a
timestamp, a hash point that is connected to the block before
it, and transaction data. Its tamper-proof ability depends on
the hash values since if the block content is compromised, all
following blocks must be changed, which is nearly impossible
[28]. The proposition of integrating blockchain technology is
becoming prevalent due to numerous capabilities in closing
cybersecurity gaps in DER-based smart grids [16].

F. Differential Privacy Applications

Differential privacy is a mathematical standard that protects
the privacy of individuals in a dataset by limiting the amount
of personal information that can be revealed by an output [5].
Noise can be added to the aggregated data or query results
to prevent the identification of specific data contributors.
Specifically, Laplace mechanisms can be utilized to main-
tain data utility while safeguarding privacy [7]. Differential
privacy helps mitigate privacy risks in decentralized systems



by enabling the secure sharing of data between DER units,
aggregators, and utilities [9].

G. Research Questions

The design of the methodology was guided by two main
research questions. First, what are the implications of introduc-
ing blockchain technology into the existing regulatory frame-
works for energy grids? The question was intended to open
up the possibility of investigating challenges and opportunities
related to integrating blockchain in a highly regulated domain.
Second, the question of how this would actually be instantiated
in a real infrastructure setting, with consideration given to
some of the important performance metrics, such as transaction
latency and certificate issuance times? This focus has been on a
feasible, efficient solution which satisfies operational demands
for distributed energy resource systems.

III. METHODS

This research aimed to evaluate the resilience, scalabil-
ity, and privacy-preserving capabilities of a blockchain-based
smart grid system. An original framework was designed
to simulate real-world Distributed Energy Resource (DER)
interactions through a blockchain network. The blockchain
prototype was implemented in Python using Flask (3.1.0),
providing a suite of API endpoints for core functionalities
such as block creation, certificate issuance, and attack sim-
ulations. The system represented a smart grid environment
by simulating Distributed Energy Resources (DERs), which
were assigned one of three roles: producers, consumers, or
certificate authorities. Producers generated energy, consumers
utilized energy, and certificate authorities validated transac-
tions by issuing secure digital certificates.

The tests were conducted in a controlled local environment,
with the Flask application running on a single machine. Data
was collected in real time through API interactions simulated
using Postman (v10.21.0), and metrics such as transaction
latency, chain integrity, and recovery times were recorded. The
results of these tests were visualized using Matplotlib (3.8.0)
to identify trends and quantify system performance. Each
experiment focused on a specific aspect of the blockchain’s
functionality, including its ability to handle transaction vol-
ume, resist cyberattacks, and implement privacy-preserving
mechanisms.

The code is available at this URL: https://github.com/
nogagercsak/BlockchainSimulation.

The first test explored the blockchain’s scalability and
growth. Certificates were issued to nodes in batches of in-
creasing size, starting with 10 transactions and progressing
to 50 and 100 transactions. After each batch, the blockchain
state was retrieved to measure its size, block creation time,
and overall integrity. These results allowed for an analysis of
whether the system scaled linearly with increased transaction
volumes while maintaining its validity.

The second set of tests focused on the system’s resilience
to cyberattacks, simulating three common attack scenarios:
replay attacks, certificate spoofing, and Distributed Denial of

TABLE II
TECHNICAL IMPLEMENTATION SPECIFICATIONS
Component Specification
Programming e Python 3.9
Environment e Flask 3.1.0
Consensus o Proof-of-Authority with designated certifi-
Mechanism cate authorities

Block Structure e Index (integer)

o Timestamp (Unix time)

e Transaction data (string)

e Previous block hash (SHA-256)

e Current block hash (SHA-256)
e SHA-256

e Laplace mechanism
e Scale parameter (8) = 1.0
e Applied to certificate data

Hashing Algorithm

Differential Privacy

e Producers
o Consumers
e Certificate Authorities

Node Types

API Endpoints e Certificate issuance
e Chain validation
e Attack simulation

[ Recovery measurement

Data Storage e In-memory storage with JSON serializa-

tion

e Chain validation

e Node blacklisting
e Attack detection

e Automatic recovery

Security Features

Service (DDoS) attacks. Replay attacks involved resending
previously validated transactions to test the system’s ability to
reject duplicates. Certificate spoofing attempted to introduce
fake nodes and issue fraudulent certificates. DDoS attacks
overwhelmed the system with a high volume of transaction
requests to evaluate how the blockchain handled excessive load
and whether it could recover effectively.

Node activity was also analyzed by adding a combination
of legitimate and malicious nodes. Producers and consumers
were manually added to simulate legitimate activity, while
spoofing attempts were used to generate malicious nodes. This
test aimed to determine the system’s ability to identify and
isolate malicious actors while maintaining normal operation.

Finally, the impact of differential privacy was assessed
by adding Laplace noise to certificate data during issuance.
This aimed to evaluate how privacy-preserving mechanisms
influenced blockchain performance, focusing on block size
and transaction speed. By varying the level of noise, the
study analyzed whether the added complexity hindered system
efficiency or scalability.

IV. RESULTS

The blockchain growth test revealed that the system scaled
linearly as transactions increased. After processing 10, 50, and
100 certificate issuance requests, the blockchain maintained
its integrity, with each block accurately recording transaction
data. Block creation times remained consistent, averaging 0.85
seconds per block. These results indicate that the blockchain



TABLE III

EXPERIMENTAL DESIGN AND TEST SCENARIOS

TABLE IV
RESULTS OF BLOCKCHAIN GROWTH TEST

Test Category

Test Parameters

Measurements

Scalability Test-
ing

e 100 certificate is-
suances

e Sequential transac-
tions

e Block creation time
e Block size

e Transaction process-
ing time

12*Attack Simu-
lation

Replay Attack:
e Duplicate transac-
tion submissions

e Attack detection rate
e Chain validity post-
attack

e Recovery time

Certificate Spoofing:
e Fake node insertion
e Unauthorized certifi-
cates

e Malicious node de-
tection

e Response time

e Blacklist effective-
ness

DDoS Attack:
. 1000 rapid
transactions
e Continuous load

testing

° Transaction
processing times

e System recovery
time

e Average transaction
time

e Total attack duration

Privacy Testing

e Laplace noise mech-
anism

e Variable noise levels
e 100 test iterations

e Transaction times
with noise

e Block size changes
e Performance impact

of noise
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Fig. 2. Results of blockchain growth test. Graph demonstrates consistent block
creation times averaging 0.85 seconds regardless of chain size, indicating
the system maintains performance as it scales. The steady oscillation pattern
shows stable performance with minimal variance.

can handle increasing transaction volumes without perfor-
mance degradation, making it suitable for smart grids with
expanding DER participation. Fig. 3 is a line graph depicting
block index versus blockchain size highlights this steady
growth pattern, demonstrating the system’s scalability under
normal operating conditions.

The data shows very stable block creation times across all
ranges, with only minor variations in the averages. This sug-
gests the system maintained consistent performance through-
out the entire blockchain creation process. The similarity
between these averages indicates a well-balanced and stable
system.

Quarter Q1 Q2 Q3 Q4
(blocks (blocks (blocks (blocks
1-25) 26-50) 51-75) 76-100)
Average creation time | 0.85 0.92 0.81 0.84
in seconds
1e-5 System Recovery Time After Replay Attacks
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Fig. 3. Results of replay attack recovery. Time series reveals rapid attack
recovery (mean of 38.6 microseconds) with two notable spikes, but system
consistently returns to normal operation below 70 microseconds, demonstrat-
ing robust recovery capabilities.

Replay attack simulations showed that the blockchain ef-
fectively rejected duplicate transactions in all test cases. Each
replay attempt was detected and blocked, with the chain
maintaining its validity. The system required an average of
0.0375 ms to recover from each replay attack. This finding
underscores the blockchain’s ability to maintain transactional
consistency, a critical requirement for secure energy trading
systems. In the experimental analysis, we examined the re-
covery time patterns from replay attacks across multiple mea-
surements. The time series visualization in Fig. 4 revealed the
system’s recovery time following replay attacks was analyzed
across 10 trial runs. The results showed a mean recovery time
of 3.86 x 10~® seconds (38.6 microseconds), with a standard
deviation of 1.64 x 10~ seconds. While most recovery times
clustered around 2.5 — 3.0 x 10~ seconds, there were two
notable peaks reaching approximately 7.0 x 10> seconds
(trials 6 and 8), suggesting occasional variability in the re-
covery process. Despite these outliers, the system consistently
recovered in under 70 microseconds, demonstrating resilience
against replay attacks. The relatively small standard deviation
indicates that the recovery mechanism is stable and predictable
under normal operating conditions.

Certificate spoofing tests confirmed the system’s ability to
reject unauthorized nodes. When spoofing attacks were simu-
lated, all fake nodes were denied access to issue certificates.
The blockchain detected these fraudulent attempts with an
average response time of 2.9 seconds. This demonstrates the
system’s strong validation mechanism, ensuring that only legit-
imate participants could transact. Fig. 5 displays the results of
the spoofing attack with a mean recovery time of 3.28 x 10~
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Fig. 4. Results of Spoofing attack recovery. Graph shows system response
to certificate spoofing attempts with mean recovery time of 3.28 x 10~°
seconds, demonstrating effective detection and rapid response to unauthorized
certificate issuance.

seconds (38.6 microseconds), with a standard deviation of
5.07 x 1075 seconds.

The DDoS attack analysis reveals significant insights about
the system’s resilience and performance under stress. During
the initial phase of the attack, the system experienced notable
transaction time spikes, reaching peaks of approximately 58
microseconds. However, the system demonstrated remarkable
recovery capabilities, with a recovery time of just 18 microsec-
onds, highlighting its robust defense mechanisms. Throughout
the attack duration of 5.19 milliseconds, the system maintained
functionality and successfully processed 1000 transactions,
with an average transaction time of 4.98 microseconds.

The system’s behavior followed a distinctive pattern, char-
acterized by initial volatility that quickly gave way to sta-
bilization. After the early spikes, transaction times consis-
tently hovered around 4-5 microseconds, though occasional
secondary spikes occurred with diminishing intensity. This pat-
tern suggests the effectiveness of the implemented mitigation
strategies. The transaction time distribution exhibited a right-
skewed pattern, with most transactions clustering around the
average time of 4.98 microseconds, while a long tail captured
the attack-induced spikes. Notably, over 90% of transactions
maintained acceptable performance levels despite the ongoing
attack.

The system’s rapid recovery time of 18 microseconds is
particularly noteworthy, indicating the presence of robust
DDoS mitigation mechanisms. The ability to maintain service
availability throughout the attack period, coupled with the
quick return to baseline performance, suggests effective load
balancing and request filtering systems. While the initial
response to the attack showed some vulnerability, the overall
performance metrics demonstrate strong DDoS resilience. The
data suggests that while the system’s defenses are generally
effective, there might be room for optimization in the initial
attack response phase, though the current performance is
well within acceptable parameters for a system under DDoS
conditions.

Node activity analysis revealed that out of 15 total nodes,

DDoS Attack Impact on Transaction Times

Fig. 5. Results of DDoS attack. Visualization shows initial performance
impact from DDoS but quick stabilization to normal transaction times around
4-5 microseconds, proving system resilience under high-volume attacks.

Node Activity Distribution

Malicious Nodes

Legitimate Nodes

Fig. 6. Node activity distribution showing legitimate versus malicious
nodes. Pie chart reveals 67% legitimate nodes versus 33% malicious nodes,
demonstrating the system’s ability to maintain majority legitimate operation
even under significant attack presence.

67% were legitimate producers and consumers, while the re-
maining 33% were malicious nodes generated through spoof-
ing attempts. Malicious nodes were successfully identified and
blacklisted, ensuring they could not disrupt the blockchain
further. A pie chart showing the distribution of legitimate
versus malicious nodes underscores the system’s effectiveness
in isolating threats while preserving regular activity.

The differential privacy test showed that adding Laplace
noise to certificate data minimally affected blockchain per-
formance. The noise increased block size slightly but did
not impact transaction speed significantly. Fig. 8 shows a
scatter plot comparing noise levels to block size, providing
a visual representation of this balance between privacy and
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Fig. 7. Impact of Laplace noise on blockchain block size. Scatter plots show
minimal performance impact from privacy mechanisms for noise levels up to
2.0, with increased variability at higher noise levels, helping identify optimal
privacy-performance tradeoff point.

performance.

Transaction times are mostly concentrated below 1 x 107>
seconds for noise levels ranging from 0 to 2. Transaction time
has a minimal variation for noise levels up to 2 but becomes
more variable at higher noise levels.

A. Conclusion of Results

The blockchain-based solution performed consistently
across several test scenarios. Block creation times were stable,
on average, at 0.85 seconds over all quarters of testing,
ranging from 0.81 to 0.92 seconds—good scalability. The
system really proved resilient under DDoS conditions, with
1000 transactions processed and an average transaction time
of 4.98 microseconds; the recovery times achieved were in 18
microseconds.

These results compare favorably with traditional SCADA
[22] and substation networks [10], which typically introduce
latencies ranging from 2 ms to 423 ms for comparable
security operations. The response metrics, especially during
attack scenarios, suggest effective mitigation strategies while
preserving operational stability.

Analysis of node activity confirmed a realistic test en-
vironment with 67% legitimate nodes and 33% malicious
nodes—thus showing the system is capable of functioning
when there is a high number of attack nodes. Differential
privacy with the addition of Laplace noise hardly had any
impact on the major performance indicators; thus, the trans-
action times stayed constantly in the 4-5 microsecond range
under normal operations.

These findings demonstrate that the integration of
blockchain and differential privacy can provide more security
for DER-based smart grids with the maintenance of perfor-
mance features adequate for real-world scenario deployment.

V. DI1SCUSSION & CONCLUSION

These findings have critical implications for the design
and development of secure, scalable, and privacy-preserving
energy systems. First, the linear scalability of the blockchain

TABLE V

PRIVACY IMPACT AND PERFORMANCE MEASUREMENTS

e Peak during attack:
58us

Measurement Result Observation

Type

Transaction e Normal transaction: | e Most transactions
Times 4-5us cluster around the

average time of 4.98
microseconds

Block  Creation
Time

e Average: 0.85 sec-
onds

e Consistent block cre-
ation times across all
ranges

DDoS
Performance

e Average transaction:
4.98us
e Peak recovery: 18us

® 90% of transactions
maintained acceptable
performance during an

attack

framework implies it can be applied to larger smart grid net-
works without significant performance trade-offs. This is very
important as DER participation increases in view of global
energy demands and a change toward renewable resources.
Second, the potential to withstand cyberattacks, for example,
replay, spoofing, and DDoS attacks, shows that blockchain
technology will be viable in increasing the cybersecurity of
energy systems. Integration with differential privacy further
justifies the use of blockchain in scenarios that require protect-
ing sensitive data, either user consumption patterns or energy
production metrics.

These promising results should, however, be considered in
light of some limitations. The experiments were conducted
in a controlled local environment, which may not include
all the complexities of real-world DER systems. The effects
of network latency, geographical distribution of nodes, and
integration with pre-existing energy infrastructure were not
examined. In addition, while in-memory storage and an imple-
mentation based on Python made it easier to rapidly prototype,
these choices would likely not be suitable for a large-scale,
production-grade system. Another limitation is that, though
attack simulations have been done using replay, certificate
spoofing, and DDoS attacks, other possible vulnerabilities,
such as advanced persistent threats or insider attacks, were
not checked. In the future, such vectors of attack should also
be tested to further prove the security of the system.

Building from this, future work could take several direc-
tions. First, scaling up the implementation to a distributed
environment with geographically dispersed nodes will give in-
sights into the real-world applicability of the framework. Col-
laboration with utility providers in integrating the blockchain
framework with their existing smart grid infrastructure will
further allow the testing and evaluation of the concept. Second,
it would further enhance the scalability and sustainability of
the framework by optimizing the consensus mechanism to
reduce energy consumption and improve transaction through-
put. Alternative consensus mechanisms, like Proof-of-Stake or
hybrid approaches, could bring about valuable improvements
after further exploration.
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